On the Dynamical Behavior of Solitary Waves for Coupled Stochastic Korteweg–De Vries Equations
نویسندگان
چکیده
In this paper, we take into account the coupled stochastic Korteweg–De Vries (CSKdV) equations in Itô sense. Using mapping method, new trigonometric, rational, hyperbolic, and elliptic solutions are obtained. These obtained can be applied to analysis of a wide variety crucial physical phenomena because KdV have important applications various fields physics engineering. Also, it is used design optical fiber communication systems, which transmit information using soliton-like waves. The dynamic performance depicted 3D 2D curves order interpret effects multiplicative noise. We conclude that noise influences behavior CSKdV stabilizes them.
منابع مشابه
Dynamics of Solitary-waves in the Coupled Korteweg-De Vries Equations
We find new analytic solitary-wave solutions, having a nonzero background at infinity, of the coupled Korteweg-De Vries equation, using the auxiliary function method. We study the dynamical properties of the solitary-waves by numerical simulations. It is shown that the solitary-waves can be stable or unstable, depending on the coefficients of the model. We study the interaction dynamics by usin...
متن کاملSolitary waves of a coupled Korteweg-de Vries system
In the long-wave, weakly nonlinear limit a generic model for the interaction of two waves with nearly coincident linear phase speeds is a pair of coupled Korteweg-de Vries equations. Here we consider the simplest case when the coupling occurs only through linear non-dispersive terms, and for this case delineate the various families of solitary waves that can be expected. Generically, we demonst...
متن کاملOn Solitary-Wave Solutions for the Coupled Korteweg – de Vries and Modified Korteweg – de Vries Equations and their Dynamics
which can be considered as a coupling between the KdV (with respect to u) and the mKdV (with respect to v) equations. The coupled KdV-mKdV equations were proposed by Kersten and Krasil’shchik [1] and originate from a supersymmetric extension of the classical KdV [2]. It also can be considered as a coupling between the KdV and mKdV equations: By setting v = 0 we obtain the KdV equation ut + uxxx...
متن کاملClassification of the solitary waves in coupled nonlinear Schrijdinger equations
In this paper, the solitary waves in coupled nonlinear Schrodinger equations are classified into infinite families. For each of the first three families, the parameter region is specified and the parameter dependence of its solitary waves described and explained. We found that the parameter regions of these solution families are novel and irregular, and the parameter dependence of the solitary ...
متن کاملCoupled Korteweg-de Vries equations
When a system supports two distinct long-wave modes with nearly coincident phase speeds, the weakly nonlinear and linear dispersion unfolding generically leads to two coupled Korteweg-de Vries equations. In this paper, we review the derivation of such systems in stratified fluids, extending previous studies by allowing for background shear flows. Coupled Korteweg-de Vries systems have very rich...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2023
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math11163506